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The problem of time-optimal stabilization of a perturbed nonlinear system by
controls bounded by a sphere is considered., The unperturbed system whose
optimal control is determined using Schwartz's functional inequality [1,2] is
assumed to belong to the class of controlled systems with invariant norm [17.
An effective algorithm for approximate analytical derivation of Bellman's
function and of perturbed optimal control based on the sufficient conditions of
optimality of the dynamic programming method [3] is proposed, A procedure
is developed for determining the optimal phase trajectory by successive
approximations, First approximation solution of the problem of quickest
braking the rotation of an almost dynamically symmetric solid body is derived
with the perturbing moment of viscous friction forces taken into account /[3].

l, statement of the problem . Letusconsider the system
y=foy +ef@+U+eFWlu, y@0) =y (1. 1)

where ¥ = (Y1,. - -, Yn) is the phase vector whose values are contained in a bounded
region which includes point y = 0; eis a numberical parameter (| & [< &, & >>0);
I'is a unit matrix; f,, and f are vectors, and F is a matrix; the dot denotes
differentiation with respect to time ¢ > 0, and y, is the initial phase state of
the system, It is assumed that u is the control vector function of dimension n > 1
which satisfies the constraint [ u l < uo ugp = const . It can be assumed without loss
of generality that u;, = 1 and, also, that functions fo, f and Fhave a reasonable
number of derivatives with respect to y in the indicated region. The dependence of
these functions on parameter £ can be continuous, but is not defined here.

It is assumed that the uncontrolled unperturhed system, i.e. system (1.1), when
u=0, and g = 0 has the invariant norm [1]

ﬂ’fo (y) = Oa Tl = yh‘l) h = ly|1 h = [Ov h()]? hO = 'y()‘ (1'2)

where 1 is a unit vector (column vector) directed along vector Y- and 'rl' is a
transposed vector, It follows from (1.2) that h (t) = hy = const, since k¥ = 0 and,
consequently. lyl (2) i < ho- Note that in mechamcs forces fo defined by (1,2) are
calleg gyroscopic forces [5] whose power at any Tinstant of time is zero,

The design of a time-optimal control which would bring the unperturbed system
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(L.1) to the coordinate origin is determined by the inequality el <1
(the Schwartz inequality [1,2D

u* ) = —mn, w*ltl = —no @) = — yw* . yo) / h* (¢, hy) (1.3)
ho* = hg (1 - t/ To*), TO* = hm uO* [t} == u’ﬂ* (yi)* (tv yi}»

where T'y* is the time of response, ¥o* (¢, Y,) is the unpreturbed phase trajectory,
and yp* (To*, hy) = 0. In this problem the Bellman function, i.e, the positive
smooth solution of the related Cauchy problem for the Hamilton-Jacobi equation
{1] (Bellman equations [31), is T, (y) = % (see Sectn, 3), Note that the use
of control (1, 3) for stabilizing the perturbed system (1. 1) generally results in an
error O (g) relative to the phase trajectory and to the functional of the time of
response 7. This statement follows from the equation

B=—1+en (f—Fn), h(0)=nh, (L.4)

and from the boundedness of the multiplier at ¢ in (1.4),

In applied problems it is often necessary to obtain a more accurate solution of the
problem of optimal stabilization of a perturbed system, taking into account parameter
£.  We have the following problem. Determine the time-optimal control law
u = u (y, &), the minimum timel' = T (y,, &), and the perturbed phase

trajectory y = y (¢, ¥o, €) with(y (0, yo, &) =Yony (T, yo, €) = 0) and specified
accuracy with respect to the small parameter ¢,

Problems of optimal motion control of systems in a similar formulations were
investigated in (2,4, 6~8] by the method of perturbations,

2 Controlled rotationsof asolid body. Asanexampleofa
controlled «utiperturbed system with invarient norm we consider the system of Euler's

dynamic equationsf1, 9,10]

Loy + Iy — Ioyes = M;, 0, (0) = oy (1,2,3 (2.1

where M; = b;u; (i = 1, 2, 3)are the controlling moments b; = const >0, and
%y are controls bounded by the inequality 2, -f* u,® -+ ug* < 1. The problem is
to bring the phase point of the system from the initial state w; (0) = @;, to the

coordinate origin @; (7) = 0  in the shortest time T, in other words, to determine
the time~optimal stabilization of system (2. 1),

Introducing variables z; = L;b;,"' ,where L; = I;0; are components
of the angular momentum vector defined in coupled axes, we reduce system (2, 1)
to the form of the unperturbed equations (1. 1)

2y + (I — LM, 37 babsb 2025 = uy, 2y (0) = Lyghy ™t (4, 2, 3) (2.2)
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The invariance condition (1., 2) for system (2, 2) is satisfied if parameters [,
and b; satisfy the relationship

Iy (Ty — Ibybe? + Iy (I — T3)b2bgt + Iy (I, — I)by3b = 0(2.9)

The set of such parameters is nonempty, Let I3 > Iy = Iy > 0. 1nea tor
I, > 1, equality (2,3) can be represented in the form

b0, = Iy (I3 — 1)b?b, "2 U, (I3 — 1)be?8,7% — I, (I,—1)]!

This formula is meaningful if bs*  is fairly large, i.e. when for a given p,2
the inequality bs® > b*Iol,™ (I, — I)x (I, — It is satisfied; the
same holds for 52,

Let us consider some particular cases in which the invariance condition is
satisfied,

1) In the case of a solid body with arbitrary moments of inertia .~ J,>1,
equality (2.3) is satisfied when: a} by = by, = by = b (see [1,4,8,10]); then
vector z; ({ == 4, 2, 3) and the moment of momentum vector L;: L; = bz;; are
collinear; andb) when b, = bl Y Tl4: 2, = o1/ BV 1T ) with b, < by <5.1,2,3)

2) For a dynamicauy symmetric body Iy = Iy = Iy equality (2, 3) is satisfied
for by = by = b; I3 and bgare ambitrary (I, <( 21), and when Job™! = Izbg™1
vector z; and the angular velocity vectorw; : 2; = 1,b™}w; are collinear (see [4, 8]).

3) In the case of a spherically symmetric solid body (I, = I, = I, = I
formula (2. 3) is valid for any by, by, by [4, 8],

Thus when condition (2, 3) 1s satisfied, the optimal braking of solid body
rotation is defined by an expression of the form (1.3)

u* = —z27 2= (5 +5° + )% (2. 4)

To* = 2o, Zg* = 2o (1 — t/ To¥)

The optimal trajectory z; (£) canbe derived from the known formulas for
uncontrolled motion of a solid body [4, 8, 9,10]. In the general case 1) the free
rotation is defined by elliptic equations {8}, In fact, if ¢;° is the general
solution of system (2, 1) with M; == 0 then ’

L =L’ o°=o0"¢+r7, L° E) (2.8)
where ©;° isa 2m -periodic function of phase Y = R (¢ + 1), and the frequency Q
depends on constants of the modulus of the moment of momentum L° and energy £°
These parameters and the phase constant T are determined by the initial conditions
(2.1)
Solutior for the controlled system (2. 1) when u; = u;* (see(2.5)) is of the
form L; = zl;, where functions [; satisfy the system
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dl Ig—1I L
R S TEE

zdt' =zt (1 — ﬂf‘?)

S =

Sl ~

As the result, on the basis of (2.5) we obtain for the optimal trajectory the
formula,
o [ o . (2. 6)
Li = ZLi (S -+ 6, L Zo-l, EZQ_?") (l = 1,. 2, 3), = const

Note that all components of the angular momentum vector (2, 6), as well as the
, simultaneously vanish when z = (, 1i.e, atthe

rate of variation of phase
instant of time ¢ = T * [4,8, 10].

3, Derivation of the approximate optimal control
by the method of dynamic programumin g, Solution of the problem

of defining the time-optimal stabilization of the perturbed system (1,1) consists of
finding 2 nonnegative differentiable Bellman function T (y, e) which satisfies the
Hamilton— Jacobi equation [1] (the Bellman equation [3]) with boundary condition

oT .
Ty 0@+ e ) 4+ min { G2 1L 4 eF )]uf = —1, T(0,9)=0 (D

is a column vector, and the expression 47 / 0y » fo and similar

where 07T / 8y
are scalar products, The minimization of expressions in braces in (3. 1) yields the

closed Cauchy problem

G @) et~ |G U+ @[ = —1, T0,00=0 2.2
and the formula for optimal control
u*= — (I + eF") (%:—)' ‘3_5 (I + &F) |“1 (3.3)
The solution of problem (3, 2) is expressed in the form of expansion
(3.4)

T(ye)="To(y) +eli@) +...+e&T;0)+ ...
T,(00=0, j=01,...
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where the unknown coefficients T'; and functions f and F(see Sectn. 1) may
continuously depend on parameter ¢ , The form of their dependence is not
indicated, Functions T'; (y) are obtained by successive solution of the coupled system
of equations in partial derivatives [4, 6],

T o) — || = =1, Te(@)=0 (3.9)
T, arT, 0T\ | 0Ty |1 ; .
Elfo(y)—#(‘é?") F| =V ne=0 j>1

Functions V;  in(3.5) are determined by solving preceding equations, since
atany j-th step they are calculated in terms of functions obtained in preceding

steps, i,e. f,F and 8T,/ 0y, 8T,/8y,..., 8T,/ 0y, e.g.
for j==1
0T g (OTy '] 9Ty [L OTh
=5 50 | @6

For any arbitrary subscripts j = 1, 2, . . functions V; (y) are determined by
formulas

aT;_ _ aT oT;_
ijw]m a;lf’ W]:“:Wj(F, —5;/2.’“"—53%“1) (3.7)

}%(14— eF)| = [%(I + eFY(I 4+ eF") (%)’J%f‘:

ar, Ty [ AT\ | 0T, |
ay +8L69 (éy-) oy +W1]+"'+

Tar. 2T, } aT, [‘z ] ,
i I Pty ateseonn . 3+1 .
o | - (T [ w4

From formulas (1, 3) and the definition of Beliman's function T follows that
To(y) = b =|y| is the solution of the first Cauchy problem (3.5), i.e. Ty
the Bellman function of the unperturbed problem of time-optimal stabilization, S?nce

| 8Ty / 8y | = 1, hence the formal expansions (3, 4)(3. 1) obtained above are valid for
fairly small values of parameter €. runction T, defines optimal contiol in the
form of w*in (3.3) with an error O (): up* = —m (see k.4)).

Solutions for the Cauchy problem (3,5) for j >> 1 are obtained successively,
as in [4, 8], using the method of characteristics [11, 121, The equations of
characteristics reduce to the form

Ay, . dy, 4Ty dh (5.8
foa)—m T legay—m,  V(») —1 -8)
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Let the known function y* be the general solution of system (3, 8) of the form
(c is the general integral)

y* = y* (4, yo)v y* (hm Yo) = Yo» I y* (hov yo) l = ho (3.9)
(C =C (y)$ ¢ = (cl’ Y cn-l))

The sought solutions are then determined by squaring

h

L= — [V Gy oy)dl, h=lyl, i=1,2,... (310
0

* (b, y)=1y)

Thus for determining coefficients I'; in (3. 10) of expansion (3. 4) it is
necessary to be able to derive the general solution of the unperturbed controlled
system (1.1) with u = u,* = — (see Sects, 2, 4, 5).

To prove the method of deriving the approximate solution of Eq, (3.2) with
specified boundary condition, developed in Sectn, 3, it is necessary to consider the
problem of bringing the phase point of system (1, 1) to the u -neighborhood of the
coordinate origin y = 0  in the shortest time and, then, pass to the limit p— 0.
This yields the expressions of coefficients of expansion (3, 4) that coincide with those
in (3, 10),

The vector function of optimal control  u* (y, &) can be expressed in the
form of expansion similar to (3.4)

u* (y, &) = —n + eu* + ...+ eyt et L= (3.11)
—n + euy* (y, €)

where coefficients u;* (y) are determined in terms of derivatives of functions
T; (y) after the substitution of (3. 4) into (3, 3) into (3, 3), and equating
coefficients at like powers of €. For j = 1 we have (see (3. 7).

' , (8T oT : .
u’ 1) = (FEn—n52) + Ui Ui=n (W1 —F) (3.12)

For any arbitrary j >> 1 functions u;* (y)are

aT, aT. .
ul (y) =mn (—5y—’ n— N5 ) + U; ) (3:13)

where functions U; (y) are defined similarly to functions W; in(3.7) and

depend on
F, 0T,/ o0y =n', 0T,/ 0y, ..., 0T;,/ dy.
Re m ark. If the analytic form of the generating solution (3, 9) is not known,
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the algorithm of the approximate calculation of Bellman's function can be obtained

as follows, Coefficients T; in (3. 10) are determined for the fairly dense set of

points Yt Hidy « « o Yikir 2 2 o Uy, = Ro where the first subscript
t=1,2,...,n isthe ordinal number ot the component of vector  y, the second
subscript k; denotes the ordinal number of the separation point, and N; is the
number of separation points of the interval of the i-thcomponent variation, Then we

determine function y, which is the set of solutions of the Cauchy problem for the
unperturbed controlied system.

V=fo) —m vy O =y k="(y ..o k), 1RV (3.14)

Numerical integration determines also that set in the discrete set of points of
argument ¢ = [0, hyl

Vi = ¥x (t1, Yx)s I=1, .., N(k), hy = | gy |

Since Ay = hy — {;, the sought set of functions y* (&, y) in (3, 9) specified in
the discrete set of points &; is of the form

Yo = Yu (e~ Ry y) = 4% (o y)s O Sl <k

Finally, weintegrate in conformity with(3. 10) functions V; (s* (h;, yy), of the discrete
argument p; which depends on the discrete vector parameter y,, and obtain
coefficients T; (y.) specified in a reasonably dense set of points |y, | < k. The
integration may be carried out by the method of rectangles or by some other more
accurate scheme, The approximate calculation of controls u* (y, ) (3. 11} by
formulas (3. 12) and (3. 13) may be carried out by finite difference differentiation or
some other means appropriate for solving the system in variations for problem (3, 14).

A similar algorithm of approximate determination based on dynamic programming

method can be formulated for discrete systems of optimal control most suitable for
computer calculations, However that problem requires separate consideration.

4, Derivation of the approximate optimal trajectory. The substitution of the
optimal control u* (y, ) (3.11) into (1, 1) yields the closed Cauchy problem for
the determination of optimal phase trajectories y = y (¢, Y4, &), which may be
represented in the form of expansions or successive approximations in powers of
parameter e, Let us assume that the general solution (1,3) of the unperturbed
controlled system (1. 1) (in particular, in the case of system (2. 1) this is function [,
(2. 6)) or the complete system of integrals of the (3, 9) type are known, The
perturbed optimal trajectory or the osculating variables (integrals) ¢ and the " phase”
1 can be determined in the form of quadratures with an accuracy with respect to
& equal to that with which the vector function of control ~ u* (y, &)  was
calculated.

Thus the solution of the [problem of] unperturbed controlled system yo* (¢, ¥),
yo* (0, yo) = Yo is known. Solution of the perturbed system (1, 1) is formulated



Time~optimal stabilization of a perturbed system 653

as y= y* + ex (4, &) The unknown vector z is obtained as the solution of
the Cauchy problem

x‘w(af"h*—-[‘ N_Z * __ *o Pt
= (Gyaho® =1+ 0) g -+ 1* = Fong+uey +eP(6,2) (4.1)

=15, F*O)=F@*)..., )=y /ho?, 2(0.e)=0

where, as previously, the dependence of functions f, F, ugy*, and P is not
defined; function P is known with the required degree of accuracy. Solution of the

quasi-linear system (4, 1) is obtained by successive approximations using the scheme
(12]

i
21 (1, €) =20 (6) + eX (1) | X (€) P (¢, 2 (¢ ) (4.2

t
2(t)=X () [ X1E)(* — Fro+ ulp)dt, k=1,2,...,7 -1
9

where

X (t) =dyo* Myyisthe known fundamental matrix of solutions of the unpertrbed system
(4.1). The successive approximations z; (4.2) determine for fauly small | & | the
unique solution of system (4, 1) z* (¢, e) with an error O (¢'), and y* (t, &) = yo* (2,
Yort ex* (t, &) is the system perturbed optimal trajectory determined with the same °

error (7 (8“1) as that of the control function wu* (y, e) (3.11),

The solution of the problem of determining perturbed integrale of the (3. 9) type

defined by the equations

. e ., (4.3)
¢ = ez 0y, \b~—1+s 2o c(0)=C(y,), ¥(0)=o(y,)

=C ), v=o0@) y-y ), ¢=/F+ Fu* + uy*
where
= ¢ (y) = t + Tlis a time dependent integral, reduces to quadratures similar to (4. 2).

The approximate solution of system (4, 3) is obtained by successive approximations
by a scheme of the type of (4. 2) [12]

i
» 30,
¢, == C(y,) + 85 3;01

0

t
b= b o) e\ SE G (0 BN o=t 0 (3)

9y
¢

QY (Chepy Ve 'y o= C(y,) (4.4)

Thus the constructions derived above reduce to quadratures when the general
solution ¥o* (¢, y,) for the unperturbed controlled system (1, 1) is known, It
should be noted that (as shown in Sect, 2 for Euler's equation (2, 1) in certain
important applications the general solution of the controlied system
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Y=o @) —n ¥ 0) =y, .9

can be obtained on the basis of the known uncontrolled motion v=v (¢, a, hy), that
satisfies the system with invariant norm [1]

V= fﬁ(v)» U(O) = Ypy @ = (ap ey an»l)a 'U‘ = kg

In fact (see Sectn, 2) the substitution y = h¢*w, where w is an unknown
vector function, reduces system (4. 5) to the form

W= fo (") [ Be*s w (0) = pohe™, Jw| =1 (4O

Let f, (y) be a homogeneous function of power m > 1of yi.e.fy (Yg)=7"7, (¥).
The system of Eqgs. (4, 6) then assumes the form

d 1 m -
B ), s=——(hy — ™) W], =Yoho"

As the result, we have for y,* the expression

yo* (t? y(}) = hl)* (t’ kn)v (8, a, i)s v (0, a, 1) = qugwl 4.7

where v is by assumption a known function that defines the uncontrolled motion.
The particular case of a system with invariant norm for which m = 2 was considered

in Sect, 2.

5, Braking of rotationofasolidbody with allowance
for perturbing moments The approximate solution of the problem of
time=-optimal stabilization of a solid body almost dynamically symmetric isinvestigated
with allowance for the perturbing morent of viscous friction forces [4, 8], It is assumed

that the parameters of system (2.1) are
Iyo = Lo(1 - ex1,0),  byjp = Do (1 + efiy2) 6.1

3
M, =bu; —e N Aym; (i=1,2,3), Ils+#I,
j=1

where & (e 1 <& 1)
is a small numerical parameter, T1: ¥a. B and B, are constant nu‘mf?ers
of order unity, and (8 A;;) is the tensor of the perturbing moment of viscous friction

forces (a nonnegative definite constant matrix). When g = ( the solution of the
problem of time-optimal braking is
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w* = —h, To@=h=|z| (6.2

Ly = Ii(‘)ibi_l7 ho* = hy (1 —t/ To*), TO* = hy, My = ] xoi

The optimal phase trajectory is of the form (see Sect, 2 and (4, 7)

= (1 —t]| To*)|xgL|cos (s° + 1), €OST = &9 |Zoy [ (5.3)

z, = ho*1y
Ty = ho*vy, = (1 — t/ Ty*) | 2o, | sin (° + 1), sin T = Ty | 25, |7
T3 = ho*vg = (1 — t/ Ty*)x59, §° = dxgot (1 — t/ (2T*))

d == (Is -_ Io)bs/ (1013)
The optimal control expressed as a function of time is obtained from formulas
(5.2) and (5.3)

w* [t = — | @) | ho™d cos (° + 1), u* [t] = (5.4)
— [ 2o [ sin (€ 47), s (1] = —zgghy™

When & =0 system (2,1), (5.1) reduces to the form (1. 1) 4, 8]
zy + dryxy = Uy + ey (7) + eaytzy, Ty = L1000yt (5.9)

zZ," — Arixy = Uy + eQy (7) 4 eagxixg, Xoy = Lym900;7)

xg = ug + &Q; () + eagrixy, I3y = I3030b;57"

where ¢, are transformed components of the perturbing moment of viscous friction
forces (without the & multiplier) defined by

3
?:(2) = — A hizjy b= Al (17=1,2,3)
]:

The constants a; are determined by formulas

. Is— 1Ty babg _ Ig—1I, bibs L —1, bb
e TR e vy >

Let us derive the solution of the problem of the first approximation optimal
control T (z, &) = h + €Ty + €® . . .. In conformity with (3. 6) function V, ()
which appears in the definition of coefficient T, (x)  (38.10), can be decomposed in-

to two termsV; = Vy¢ + Vir that define perturbations induced by gyroscopic moments

and friction forces, respectively,
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Vig (@) = 2% z 5 ‘;‘ ai, Vip(z)= 2 M, (5.6)

[ 1

As the result, for Tyq (7' = T'ys + T1r) we obtain [4, 8]

Tig (@) = — alay + a5 + az) wsh™ { (a2 — z,%) cos 9 - (6.7)
[L

2xyxg sin 0} ) Psin PI2dl - [2a2, cos 8 —
0
/x

(xy? — %) sin 0] })F cos idly, 6 -=durh, P == dazh™?

1]

For x4 5= 0 this formula reduces to Fresuel integrals [13], Formula (5.7)
is derived using the expression for solutions of the form (3, 9)

Ty = h (130 COS 85 — Mgg SIN Sy}, Ty = h (Mg, SIN 85 - Ngp €OSS,)  (5.3)
Ty = kg (5o = Yydh™ge, My = Zohy™Y)
using (5, 6) and substituting (5. 8) for! 7', in (3. 10) we obtain the final formula

I

3
¢ dl
Thp () = Z hijasi@, Mo)y @iy = ":'Sxi(zo Mo) 2 {2, nO)T (5.9

i, 5=1 0

After integration we substitute in (5, 9) for components of vector 7y,, their
expressions in (5. 8)

Tlio = M1 €0S $ + My SN S, Tgp == 1)y CO8 S ~— 7, Sin & (5.10)
N = Na, S = Yydh™n,

The coefficients &;; (z, 1) in (5.9) are explicitly obtained, e.g.

Thio® = Nen®

; 9y 22 P 5,11
gy = (Mo”4 Teo®) = -+ =g sin 25y — m"%’ == (1 — cos 2s0) (5.11)

If Mg issmall (] Mg | << 1)yformulas (5.7) and (5, 11) in linear and tubjc
approximations with respect to Tlao and ? %, respectively, are considerably simplified
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3 3
9 5 1
Tig=— fﬁg—xizdi +O0(Mo®): Twr=— 5 Z Aijrizi4-0 (Ngoh?) (5.12)
i==] 1) =1
Then, using the known expression for the coefficient T'; (z) we determine by
formula (3, 12) the vector function  u* which defines the optimal control
u* = —n + euy* in

the first approximation with respect to g , i.e, with an error O (%) with respect
to the functional and phase trajectory. The first approximation phase trajectory is
determined by the quadratures (4. 2) using the known general solution (5. 3) for &; of
the unperturbed system (5. 5). Note that the moment of friction forces reduces the
time of response T [4, 8],

The procedures developed here make it possible to solve approximately in
quadratures problems of time-optimal stabilization of perturbed systems of the form
(1.1), (1.2), Their application requires the ability to formulate the general solution
of problems of unperturbed controlled system with invariant norm, although in a
number of important applications it is sufficient to know only the uncontrolled motion,

Note that proposed approach makes possible the solution of the problem of
designing [optimal controls] for systems of a more general form than (1, 1), such, as
for instance,

g=fyt,z) +ef @) +bEA)ISE )+ eF (¢ a)]u

(b)) =20 h=]z| [u]|<1

where f,, and f are vector functions, b is a scalar function, and S is an
orthogonal matrix, A1l functions are assumed to be reasonably smooth in the
considered region of argument variation., A more general assumption is 1nade about
function f, than specified by (1.2), namely, \'f, (¢, ) = @ (¢, k) (see [1,81). In
the case of an unperturbed controlled system with invariant norm ¢ = 0.
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